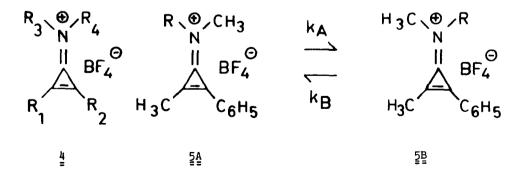

ZUR STRUKTUR UND REAKTIVITÄT DER CYCLOPROPENONE, IV 1)
INNERE ROTATION UM DIE C=N-BINDUNG IN CYCLOPROPENYLIDENIMONIUM-SALZEN

Adolf Krebs und Jörg Breckwoldt

Institut für Organische Chemie der Universität Heidelberg (Received in Germany 13 August 1969; received in UK for publication 18 August 1969)

Für eine starke Beteiligung der Struktur 1b am Grundzustand der Cyclopropenone (1a,1b)gibt es eine Reihe von experimentellen Beweisen²).


Analog sollte wegen der hohen Stabilität des Cyclopropenylium-Kations die mesomere Grenzstruktur 2b in den Cyclopropenylidenimonium-Salzen (2a,2b) ein erhebliches Gewicht besitzen, was sich in einer Erniedrigung der Energiebarriere für die Rotation um die C=N-Bindung im Vergleich zu normalen Imonium-Salzen äussern sollte. Eine entsprechende beträchtliche Herabsetzung der Rotationsbarriere um die semicyclische C=C-Bindung in Methylencyclopropenen (3a,3b) mit elektronenanziehenden Substituenten am exocyclischen C-Atom wurde bereits beobachtet³).

Die Cyclopropenylidenimonium-fluoborate 4 und 5 wurden aus den entsprechenden Cyclopropenonen durch Umsetzung mit Ammoniumfluoboraten 4) oder durch Reaktion der Athoxonium-Salze mit Aminen 4,5) dargestellt. Methylphenylcyclopropenon (Schmp. 72-73°) und Methyl-p-anisylcyclopropenon (Schmp. 97-98°) wurden in Analogie zur Darstellung des Diphenyl-cyclopropenons⁵⁾ aus Athylbenzylketon bezw. aus Athyl-p-methoxybenzylketon durch Bromierung mit 2 Mol Brom zum Dibromketon und anschließende Abspaltung von 2 Mol HBr synthetisiert.

Die freien Aktivierungsenthalpien ΔG^{*} für die Rotation um die C=N-Bindung wurden auf zwei verschiedenen Wegen ermittelt :

- 1. Bestimmung der Koaleszenztemperatur T_c zweier Methylsignale in $\frac{4}{4}a-\frac{4}{4}d$, wobei in $\frac{4}{2}a$ die Koaleszenz der N-Methylgruppen, in $\frac{4}{2}b-\frac{4}{2}d$ die Koaleszenz der Cyclopropen -Methylgruppen beobachtet wurde (s.Tab.1). Bei $\frac{4}{2}b$ lag T_c über 200° C, doch war bei dieser Temperatur bereits starke Linienverbreiterung eingetreten, so daß hier die Koaleszenztemperatur bei 60 MHz wahrscheinlich zwischen 200 und 210° liegt. Bei Temperaturen zwischen 150 und 200° C zersetzten sich in Nitrobenzol die Imonium-Salze $\frac{4}{2}a-\frac{4}{2}d$ geringfügig; bei tieferen Temperaturen traten nach Beobachtung des Koaleszenzpunkts die ursprünglichen Signale wieder auf.
- 2. Kinetische Verfolgung der Äquilibrierung der cis-trans-Isomeren $\frac{5}{4}$ und $\frac{5}{2}$ im 1 H-NMR-Spektrum durch Integration der verschiedenen Methyl-Signale (s.Tab.2); die cis-trans-Isomeren wurden durch fraktionierte Kristallisation getrennt. Es konnte in allen Fällen ein Isomeres rein (>99%) isoliert werden; das zweite Isomere wurde im Falle von $\frac{5}{2}$ c in angereicherter Form gewonnen und hier wurde die Äquilibrierung von beiden Seiten her durchgeführt. Die Argumente für die Zuordnung der beiden Isomeren $\frac{5}{4}$ und $\frac{5}{2}$ B werden in einer ausführlichen Publikation diskutiert. Die Δ G -Werte für die Verbindungen $\frac{5}{4}$ - $\frac{5}{4}$ s sind in dieser Meßreihe exakt vergleichbar, da sie alle bei der gleichen Temperatur bestimmt wurden.

Tab. 1: NMR-Daten und freie Aktivierungsenthalpien ΔG_c^{\dagger} für die Rotation um die C=N-Bindung in den Imonium-Salzen $\frac{4a}{2}$ in Nitrobenzol aus Untersuchungen der Linienverbreiterung

	R ₁	R ₂	R ₃	R ₄	ΔΥ [Hz]	т. [°с]	△ G [‡] [kcal/Mol]
4a 4b 4c 4c == 4d	C6H5 CH3 CH3	сн ₃ сн ₃ сн ₃	CH ₃ CH ₃ CH ₃	CH ₃ C ₆ H ₅ m-NO ₂ -C ₆ H ₄ p-NO ₂ -C ₆ H ₄	4,5 15,5 10,0 6,8	190±3 > 200 176±3 155±3	25,4 [±] 0,3 > 25,5 23,9 [±] 0,4 23,0 [±] 0,4

 $\Delta \gamma$: Verschiebungsdifferenz der Methylsignale, deren Koaleszenztemperatur bestimmt wurde, bei langsamer Rotation

T : Koaleszenztemperatur bei 60 MHz

 Δ G[†]_c : Freie Aktivierungsenthalpie bei T_c, berechnet nach der Näherungsformel von Gutowsky und Holm⁶)

Tab. 2: Gleichgewichtskonstanten K, kinetische Daten und freie Aktivierungsenthalpien ΔG^{\dagger} für die cis-trans-Isomerisierung $5A \rightleftharpoons 5B$ in CD_3NO_2 bei $27,2^{+}_{0},2^{\circ}_{C}$

	R	К	t _{1/2} [min]	k _A ·10 ⁶ [sec ⁻¹]	[k _B ·10 ⁶ [sec ⁻¹]	△GA [kcal/Mol]	Δ [‡] , [‡] 0,1
5ª	р-СН30-С6Н4	0,61	1974	3,64	2,21	25,0	25,3
<u>5</u> ₽	р-сн ₃ -с ₆ н ₄	0,71	614	11,0	7,80	24,4	24,6
<u>5</u> €	с ₆ н ₅	0,78	322	20,3	15,6	24,0	24,2
5₫	p-C1-C6H4	0,81	224	28,4	23,1	23,8	23,9
5e	m-NO ₂ -C ₆ H ₄	0,89	55,1	110,8	99,0	23,0	23,1
5 <u>f</u>	p-NO ₂ -C ₆ H ₄	1,09	9,8	565	616	22,0	22,0
55	^{CH} 2 ^{-C} 6 ^H 5	1,53	2256	2,03	3,09	25,4	25,1

$$K = \frac{\begin{bmatrix} 5A \end{bmatrix}_{\infty}}{\begin{bmatrix} 5B \end{bmatrix}_{\infty}} = \frac{k_B}{k_A} \qquad ; \qquad t_{1/2} = \frac{\ln 2}{k_A + k_B}$$

1. Die freie Aktivierungsenthalpie △ G [‡] für die Rotation um die C=N-Bindung in den Cyclopropenylidenimonium-Salzen ist wesentlich geringer als in normalen Imonium-Salzen, in denen sich am C- und N-Atom der C=N-Bindung nur Alkyl- oder Arylreste befinden.Isomerisierungsversuche an 6A

Aus diesen Ergebnissen lassen sich folgende Schlüsse ziehen :

zeigten, daß hier Δ G $^{\dagger}_{80,2}$ $^{\circ}$ $^{\circ}$ 30,2 kcal/Mol ist; Zersetzungserscheinungen beim Erhitzen von $^{\circ}$ verhinderten eine Bestimmung von Δ G † , so daß der Wert von 30,2 kcal/Mol nur eine untere Grenze darstellt. Durch zwei Dimethylamino-Gruppen am C-Atom (Guanidinium-Salze) wird die Barriere für die Rotation um die C=N-Bindung auf 12-21 kcal/Mol gesenkt 7 .

2. Elektronenanziehende Substituenten am Stickstoff setzen ΔG^{\ddagger} herab, elektronenliefernde Substituenten erhöhen ΔG^{\ddagger} . Die Wirkung der Substituenten am Dreiring ist genau entgegengesetzt; so wurde bei $\frac{7}{2}$ ΔG^{\ddagger}_{A} $\frac{1}{27,2}$ 0 = 22,9 kcal/Mol und ΔG^{\ddagger}_{B} $\frac{1}{27,2}$ 0 = 23,0 kcal/Mol gefunden.

Die log k- und ΔG^{\ddagger} -Werte der am N-Phenylrest substituierten Cyclopropenylidenimonium-Salze $\frac{5}{2}$ sowie die Logarithmen der Gleichgewichts-

konstanten K lassen sich gut mit den σ^+ -Konstanten $^{8)}$ korrelieren (Abb. 1), wenn man für die p-Nitrogruppe den für Reaktionen an Anilinen im allgemeinen verwendeten Wert von $\sigma \Rightarrow 1,27$ benutzt.

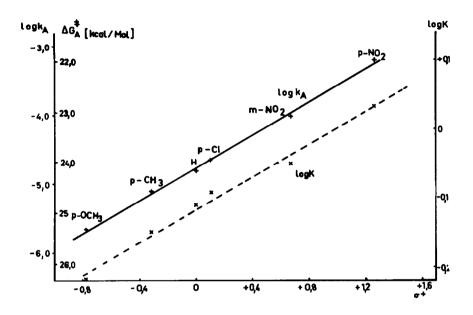


Abb. 1: ΔG_A^{\dagger} , log k_A und log K als Funktion der σ ⁺-Werte (σ_{NO_2} =+1,27) für die Imonium-Salze 5a-5f

Literatur :

^{1) 3.}Mitteilung: A.Krebs, B.Schrader und F.Höfler, <u>Tetrahedron Letters</u>

1968, 5935.

²⁾ A.Krebs und B.Schrader, Liebigs Ann.Chem. 709, 46 (1967).

³⁾ A.S.Kende, P.T.Izzo und W. Fulmor, Tetrahedron Letters 1966, 3697.

⁴⁾ T.Eicher und G. Frenzel, Z.Naturforschung 20b, 274 (1965).

⁵⁾ R.Breslow, T.Eicher, A.Krebs, R.A.Peterson und J.Posner, <u>J.Amer.</u> chem.Soc. <u>87</u>, 1320 (1965).

- 6) H.S.Gutowsky und C.H.Holm, <u>J.chem.Physics</u> 25, 1228 (1956).
- 7) H.Kessler und D.Leibfritz, Tetrahedron Letters 1969, 427.
- 8) L.M.Stock und H.C. Brown in <u>Advances in Physical Organic Chemistry</u>, Vol. 1, S. 35, Academic Press, London und New York (1963).